Dynamic Subset Selection Based on a Fitness Case Topology

نویسندگان

  • Christian Lasarczyk
  • Peter Dittrich
  • Wolfgang Banzhaf
چکیده

A large training set of fitness cases can critically slow down genetic programming, if no appropriate subset selection method is applied. Such a method allows an individual to be evaluated on a smaller subset of fitness cases. In this paper we suggest a new subset selection method that takes the problem structure into account, while being problem independent at the same time. In order to achieve this, information about the problem structure is acquired during evolutionary search by creating a topology (relationship) on the set of fitness cases. The topology is induced by individuals of the evolving population. This is done by increasing the strength of the relation between two fitness cases, if an individual of the population is able to solve both of them. Our new topology-based subset selection method chooses a subset, such that fitness cases in this subset are as distantly related as is possible with respect to the induced topology. We compare topology-based selection of fitness cases with dynamic subset selection and stochastic subset sampling on four different problems. On average, runs with topology-based selection show faster progress than the others.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic subset selection based on a fitness case topology (preprint)

A large training set of fitness cases can critically slow down genetic programming, if no appropriate subset selection method is applied. Such a method allows to evaluate an individual on a smaller subset of fitness cases. In this paper we suggest a new subset selection method that takes the problem structure into account, while being problem independent at the same time. In order to achieve th...

متن کامل

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

Mahalanobis-Taguchi System-based criteria selection for strategy formulation: a case in a training institution

The increasing complexity of decision making in a severely dynamic competitive environment of the universe has urged the wise managers to have relevant strategic plans for their firms. Strategy is not formulated from one criterion but from multiple criteria in environmental scanning, and often, considering all of them is not possible. A list of criteria utilizing Delphi was selected by consu...

متن کامل

Some Training Subset Selection Methods for Supervised Learning in Genetic Programming

When using the Genetic Programming (GP) Algorithm on a diicult problem with a large set of training cases, a large population size is needed and a very large number of function-tree evaluations must be carried out. This paper describes how to reduce the number of such evaluations by selecting a small subset of the training data set on which to actually carry out the GP algorithm. Three subset s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Evolutionary computation

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2004